

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE In Statistics (9ST0) Paper 01: Data and Probability

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021 Question Paper Log Number P66655A Publications Code 9ST0_01_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

Total marks

The total number of marks for the paper is 80.

Mark types

The Edexcel Statistics mark schemes use the following types of marks:

- M Method marks, awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B Unconditional accuracy** marks are independent of M marks
- E Explanation marks

NOTE: Marks should not be subdivided.

Abbreviations

These are some of the marking abbreviations that will appear in the mark schemes.

- ft follow through
- PI possibly implied
- cao correct answer only
- cso correct solution only (There must be no errors in this part of the question)
- awrt answers which round to
- awfw answers which fall within (a given range)
- SC special case
- nms no method shown
- oe or equivalent
- dep dependent (on a given mark or objective)
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper

Further notes

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied **positively**. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is **no ceiling** on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through.
- All M marks are 'possibly implied' (PI) unless specifically stated otherwise in the 'Notes' column.
- After a **misread**, the subsequent A marks affected are treated as A1ft, but manifestly absurd answers should never be awarded A marks.
- **Crossed out** work should be marked UNLESS the candidate has replaced it with an alternative response.
- If **two solutions** are given, each should be marked, and the resultant mark should be the mean of the two marks, rounded down to the nearest integer if needed.

		Sche	me		Marks	AO	Notes
					M1	1.1	PI Numerator correct (Accept each value ±2, or total ±4) or Denominator correct (may be seen in two fractions)
	=	$\frac{100}{136} = \frac{25}{34} =$	0.735		A1	1.1	awfw 0.71~0.76 Actual: 0.7352941
[X=	numł	per of error	rs on a page]			
npı	netho	d					
x	n	p	np				
0	58	0.4265	0.0000				
1	42	0.3088	0.3088				
2	20	0.1471	0.2941				PI
3	8	0.0588	0.1765		M1	1.1	Attempt to find <i>np</i>
4	2	0.0147	0.0588				
5	4	0.0294	0.1471				
6	0	0.0000	0.0000				
7	2	0.0147	0.1029				
E			f.)		M1 A1	1.1	PI Correct method to find E(X) awfw 0.97~1.19
	$ \begin{bmatrix} X = \\ np t \\ x \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix} $	$\begin{bmatrix} X = \text{numb} \\ np \text{ metho} \\ \hline x & n \\ \hline 0 & 58 \\ \hline 1 & 42 \\ \hline 2 & 20 \\ \hline 3 & 8 \\ \hline 4 & 2 \\ \hline 5 & 4 \\ \hline 6 & 0 \\ \hline 7 & 2 \\ \hline E(X) = \sum_{n=1}^{\infty} \begin{bmatrix} X \\ X$	$\frac{58+42}{136}$ $=\frac{100}{136}=\frac{25}{34}=$ [X = number of error np method $\frac{x n p}{0 58 0.4265}$ $\frac{1}{1} 42 0.3088$ $\frac{2}{2} 20 0.1471$ $\frac{3}{3} 8 0.0588$ $\frac{4}{2} 2 0.0147$ $\frac{5}{4} 0.0294$ $\frac{6}{6} 0 0.0000$ $\frac{7}{2} 2 0.0147$	$\overline{136}$ $= \frac{100}{136} = \frac{25}{34} = 0.735$ $[X = \text{number of errors on a page}] np method x n p np 0 58 0.4265 0.0000 1 42 0.3088 0.3088 2 20 0.1471 0.2941 3 8 0.0588 0.1765 4 2 0.0147 0.0588 5 4 0.0294 0.1471 6 0 0.0000 0.0000 7 2 0.0147 0.1029 $	$\frac{58+42}{136}$ $=\frac{100}{136} = \frac{25}{34} = 0.735$ [X = number of errors on a page] np method $\frac{x n p \qquad np}{0 58 0.4265 \qquad 0.0000}$ 1 42 0.3088 0.3088 2 20 0.1471 0.2941 3 8 0.0588 0.1765 4 2 0.0147 0.0588 5 4 0.0294 0.1471 6 0 0.0000 7 2 0.0147 0.1029 $E(X) = \sum np$	$\frac{58+42}{136}$ M1 $= \frac{100}{136} = \frac{25}{34} = 0.735$ A1 $[X = number of errors on a page]$ A1 $[X = number of errors on a page]$ M1 $\frac{x}{0}$ $\frac{p}{0}$ np 0 58 0.4265 0.0000 1 42 0.3088 0.3088 2 20 0.1471 0.2941 3 8 0.0588 0.1765 4 2 0.0147 0.0588 5 4 0.0294 0.1471 6 0 0.0000 0.0000 7 2 0.0147 0.1029 $E(X) = \sum np$ M1	$\frac{58+42}{136}$ M1 1.1 $=\frac{100}{136} = \frac{25}{34} = 0.735$ A1 1.1 $[X = number of errors on a page]$ A1 1.1 Imp method Imp np np x n p np np 0 58 0.4265 0.0000 1 42 0.3088 0.3088 2 20 0.1471 0.2941 3 8 0.0588 0.1765 4 2 0.0147 0.0588 5 4 0.0294 0.1471 6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7 2 0.0147 0.1029 $M1$ 1.1

Qu			Schei	ne	Marks	AO	Notes
1(a)(ii)	Raw data method						
cont.	x	n	xn				
	0	58	0				
	1	42	42				
	2	20	40				
	3	8	24		(M1)		Attempt to find <i>xn</i> PI
	4	2	8				
	5	4	20				
	6	0	0				
	7	2	14				
	E(X	$(x) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$	$\frac{\sum xn}{136} =$		(M1)		PI Correct method to find E(X)
		= - 1	$\frac{148}{136} = \frac{37}{34} =$	1.09 (3 s.f.)	(A1)		awfw 0.97~1.19
1(b)	1.09	×223	=243 (3 s	.f.)	B1ft	1.2	awfw 216~266 ft their (a)(ii)
1(c)	Poss	sible r	easons (no	t exhaustive)			
	The novels are by the same author (so you would expect the distribution to be similar)						
	They	y are b	ooth novels				
					E1	3.1a	Any sensible reason

Qu	Scheme	Marks	AO	Notes
1(d)	Possible reasons (not exhaustive)			
	The author's spelling, punctuation, and grammar may have improved since the last novel.			
	The author may have learnt how to use a spellchecker since the last novel.			
	There may be a different number of words per page in the new novel.			
		E1	3.1a	Any sensible reason
	Total	8		

Qu	Schei	ne	Marks	AO	Notes
2(a)(i)	Probability = 0		B1	1.1	
2(a)(ii)	(0.5–0.28) [×1]		M1	1.2	PI Clear attempt to find correct area or interval size on <i>x</i> -axis
	= 0.22		A1	1.2	cao SC 0.44 scores M1A0
2(b)	0.1×2 [×1]		M1	1.2	PI or (0.1-(-0.1)) Clear attempt to find correct area or interval size on <i>x</i> -axis
	= 0.2		A1	1.2	cao
2(c)	[X = Number of read minor error in 30 sec				
	$X \sim B(30, 0.2)$		B1	2.1a	PI Binomial distribution used
	$P(X \ge 10)$	M1	2.1b	Ы	
	=0.0611 (3 s	f.)	A1	1.2	awrt 0.061 Actual: 0.061087
2(d)	Measurements are in another.	dependent of one	E1	3.1a	Accept: The probability of a minor error remains the same throughout the 30- second interval. Do not accept: Only two possible outcomes (as this is evident in the question) oe
L	1	Total	9		1

Qu	Scheme	Marks	AO	Notes
3(a)	Possible criticisms (not exhaustive)			
	The horizontal axis labels have unequal differences.			
	There is no horizontal axis title.			Condone: No axis titles (or labels) for E1 only
	The vertical axis title is in an unusual place.			Do not accept: No vertical axis title
	The £ unit is only included on one label on the vertical axis.			
	It is hard to read off values on the graph.			
	It is very crowded.			or busy oe
	The pictures of the coins are unnecessary.			
	There appear to be horizontal gaps between some parts of the curve.			
				Do not accept: lines are disconnected oe
		E1, E1	3.1a, 3.1a	E1 for each sensible criticism (Max E2)
3(b)	2	B1	1.1	awfw 1.7~2
	Total	3		

Qu	Scheme	Marks	AO	Notes
4(a)	(A) Disproportional	B1	1.1	
	stratified sample	B1	1.1	
	(B) Cluster sample	B1	1.1	Accept opportunity sample Accept quota sample
	(C) Judgemental sample	B1	1.1	Accept quota sample
4(b)	Example process			
	Import the data into a spreadsheet .			Accept database Accept named spreadsheet or database (e.g. Excel, Access)
	Number each tree (1–917).		•	or 'add ID field' oe or 0–916 ?
	Use a random number generator to find a number between 1 and 917.			Accept between 1 and 91/92 or 0–90/91
	Generate 9 more numbers by adding on 91 each time, (cycling back to 1 after 917 is reached).			Accept 92
	Filter/delete/hide all rows/records/trees which do not correspond to the generated numbers.			or use LOOKUP/ VLOOKUP function to find all of the trees corresponding to the generated numbers
		E1, E1, E1, E1	$1.1, \\ 1.1, \\ 1.1, \\ 1.1, \\ 1.1$	E1 for each relevant step (max E4)
	SC Systematic sample not correctly appli	ed scores l	E3 max	L

Scheme	Marks	AO	Notes
Example advantages (not exhaustive)			
This is most likely to be representative of the population of trees.			
Kit could specify the type of sample of trees he needs.			
It would be easier for Kit, as the manager is selecting the sample.		>	Do not accept quicker
	E1	3.1a	E1 for sensible advantage described
			Condone no context
Example disadvantages (not exhaustive)			
The manager may not have sufficient knowledge of the trees.			
Asking someone's opinion about the trees may introduce bias.			or the manager may choose her favourite trees which have similar characteristics oe Do not accept 'bias' alone
It may be difficult to get time with the manager, as she may be very busy.			or cannot be completed by Kit alone
The trees may be awkward to get to (or find).			
The sample of trees is not random.			
	E1	3.1a	E1 for sensible disadvantage described
			Condone no context
SC1: Max E1 if advantage and disadvanta	ige not ma	de clea	r
	Example advantages (not exhaustive)This is most likely to be representative of the population of trees.Kit could specify the type of sample of trees he needs.It would be easier for Kit, as the manager is selecting the sample. Example disadvantages (not exhaustive)The manager may not have sufficient knowledge of the trees.Asking someone's opinion about the trees may introduce bias.It may be difficult to get time with the manager, as she may be very busy.The trees may be awkward to get to (or find).The sample of trees is not random.	Learning (not exhaustive)Image: Image: Imag	Example advantages (not exhaustive)Image: Constraint of the population of trees.Image: Constraint of the population of trees.This is most likely to be representative of the population of trees.Image: Constraint of trees.Image: Constraint of trees he needs.Kit could specify the type of sample of trees he needs.Image: Constraint of trees.Image: Constraint of trees.It would be easier for Kit, as the manager is selecting the sample.Image: Constraint of trees.Image: Constraint of trees.E13.1aExample disadvantages (not exhaustive)Image: Constraint of trees.Image: Constraint of trees.The manager may not have sufficient knowledge of the trees.Image: Constraint of trees.Image: Constraint of trees.Asking someone's opinion about the trees may introduce bias.Image: Constraint of trees.Image: Constraint of trees.It may be difficult to get time with the manager, as she may be very busy.Image: Constraint of trees.Image: Constraint of trees.The trees may be awkward to get to (or find).Image: Constraint of trees.Image: Constraint of trees.Image: Constraint of trees.The sample of trees is not random.Image: Constraint of trees.Image: Constraint of trees.Image: Constraint of trees.The sample of trees is not random.Image: Constraint of trees.Image: Constraint of trees.Image: Constraint of trees.

Total 10

Qu	Scheme	Marks	AO	Notes
5(a)	[D = Event that adult is a user of the drug] [T = Event that Test A is positive]			
	Bayes' theorem method			
	P(D) = 0.01			PI
	$\mathbf{P}(T \mid D) = 0.97$	B1, B1	1.2, 1.2	B1 for one correct B2 for all three
	$P(T \mid D') = 0.04$,	
			,	
	P(D T)	M1	2.1b	PI Clear intent to find this probability
	$= \frac{\mathbf{P}(D) \times \mathbf{P}(T \mid D)}{\mathbf{P}(D) \times \mathbf{P}(T \mid D) + \mathbf{P}(D') \times \mathbf{P}(T \mid D')}$	M1	2.1b	PI Clear attempt at Bayes' theorem
	$=\frac{0.01\times0.97}{0.01\times0.97+0.99\times0.04}$	M1	1.2	Correct formula with no more than 1 error This expression must be seen Denominator = 0.0493
	= 0.1968 (4 d.p.)	A1*	1.2	Complete solution with no errors seen
	P			

Qu	Scheme	Marks	AO	Notes
5(a) cont.	Tree diagram method			
cont.	$\begin{array}{c} 0.97 \\ \hline 0.01 \\ \hline 0.03 \\ \hline T' \end{array}$	(B1)		Correct diagram structure with D and T (oe) correctly placed.
	0.99 D' 0.96 T'	(B1)		Circled probabilities correct and correctly placed.
	$P(D \cap T) = 0.0097$ [P(D \cap T') = 0.0003] P(D' \cap T) = 0.0396 (3 s.f.) [P(D' \cap T') = 0.9504]	(M1)		PI Clear attempt at multiplying probabilities along branches
	P(D T)	(M1)		PI Clear intent to find this probability
	$= \frac{P(D \cap T)}{P(D \cap T) + P(D' \cap T)}$ $= \frac{0.0097}{0.0097 + 0.0396}$	(M1)		Correct formula or method (must be clear) This expression must be seen Denominator = 0.0493
	= 0.1968 (4 d.p.)	(A1*)		Complete solution with no errors seen
5(b)	The majority of people testing positive for the drug are not users of the drug.	E1	2.1a	or too many false positives oe

Qu	Scheme	Marks	AO	Notes
5(c)	Situation			
	Test A could be given to all adults in the facility	E1	2.1b	or all people, most people etc oe
	and Test B only given to people who test positive to Test A.	E1	2.1b	oe
	Benefits			
	Limiting the use of Test B will keep costs down,			oe
	and minimise the use of invasive procedures for people in the facility.			oe
	The addition of test B will improve the accuracy of the drug-testing scheme.			oe
		E1, E1	2.1a, 2.1a	E1 for each sensible benefit (max E2)
	Total	11		

Qu	Scheme	Marks	AO	Notes
6(a)	Possible conditions			
	Hiccups occur randomly.			
	Hiccups occur independently of one another.			
	Hiccups occur at a constant (average) rate.			or probability of an event occurring is proportional to the length of time.
	Hiccups occur singly.			
		E1, E1, E1	3.1a, 3.1a, 3.1a	E1 for each correct condition (max E3) Max E2 if no context
6(b)	[X = number of hiccups in the next minute]			
	Assume $X \sim Po(8.5)$	M1	2.1b	PI Clear use of Poisson distribution with $\lambda = 8.5$
	$P(X \le 2) = 0.00928$	A1	1.2	awrt 0.0093 Actual: 0.00928324

Qu	Scheme	Marks	AO	Notes
6(c)	Exponential method			
	[$Y =$ time until next hiccup]			
	Assuming $Y \sim \operatorname{Exp}(8.5)$	B1	2.1b	PI Clear use of Exponential distribution with $\lambda = 8.5$ or $\mu = \frac{1}{8.5} = \frac{2}{17} = 0.1176$
	$P(Y \ge 0.5)$	M1	1.2	PI Clear attempt to find this probability
	$=1-P(Y \le 0.5)$			
		M1	1.2	PI
	$=1-\left(1-e^{-8.5x}\right)$			Correct use of cumulative formula
	= 0.0143	A1	1.2	awrt 0.014 Actual: 0.01426423
	SC λ = 4.25 can score B1M1M1A0 max	 	I	
	Poisson method			
	[W = number of hiccups in the next half- minute] Assuming $W \sim Po(4.25)$	(B1)		PI Clear use of Poisson distribution
		(M1)	• •	PI with $\lambda = 4.25$
	$\mathbf{P}(W=0)$	(M1)		PI Clear attempt to find this probability
	= 0.0143	(A1)		awrt 0.014 Actual: 0.01426423

Qu	Scheme	2	Marks	AO	Notes	
6(d)	30 seconds is not a sufficie time to wait	ient amount of	Eldep	3.1a	Not sufficient	
					Dep on good attempt at explanation.	
	as more than 1 in 100 a false success	trials may show	E1	3.1a	The probability is not negligible.	
	and Yasmine plans to	run 500 trials.	E1	3.1a	Lots of trials	
	Alternative (E2 max)					
	30 seconds is a sufficient time	t amount of	(E1dep)		Dep on good attempt at explanation.	
	as the probability in (c) is very low.		(E1)			
	SC Max E1 for sensible	explanation based	on ft from	6(c)		
	Total 12					

Total 12

Qu	Scheme	Marks	AO	Notes
7(a)	17×0.55	M1	1.2	РІ
	= 9.35	A1	1.2	
7(b)	[X = number of frames won by Gordon in 17 frames]			
	$X \sim B(17, 0.55)$	B1	2.1a	PI Clear use of binomial distribution with n = 17
	$\mathbf{P}(X \ge 9)$	M1	1.2	PI
	$= 1 - P(X \le 8)$	A1	1.2	awrt 0.66
	=0.663 (3 s.f.)			Actual: 0.662564
7(c)	Single binomial distribution method			
	[Acknowledging that additional frames could theoretically be played after one player had won, but that they would have no effect on the outcome]			
	[Y = number of frames won by Gordon in 25 frames]			
	$[Y \sim B(25, 0.55)]$			
	$P(Y \le 7)$ or $P(Y \ge 18)$		2.1b	PI Either seen
	$P(Y \le 7) = 0.0058$ $P(Y \ge 18) = 0.0639$	M1		or either correct probability seen Condone 0.936
	P(Finish in 3 sessions) = P(Y \le 7) + P(Y \ge 18)	M1	2.1b	PI Attempt to sum both tails
	=0.0697 (3 s.f.)	A1	1.2	awrt 0.070

Qu	Scheme	Marks	AO	Notes
7(c) cont.	Multiple binomial distribution method			
	Clear attempt to use binomial distribution with multiple values of n between 18 and 25.	(M1)		
	Clear attempt to consider both tails of the binomial distribution	(M1)		Consideration of $Y \le$ and $Y \ge$ or Consideration of two binomial distributions with p = 0.55 and $p = 0.45$
	P(Finish in 3 sessions) = 0.0697 (3 s.f.)	(A1)		awrt 0.070
7(d)	[There is a 7% probability that] the organisers will lose ticket and television revenue from the final session.			Organisers may lose money.
	or	E1 ft	2.1a	
	[There is a 7% probability that] spectators who have bought tickets to the 4 th session will not be able to watch the match			

Qu	Scheme	Marks	AO	Notes
7(e)	Possible solutions (not exhaustive)			
	Increase ticket prices to allow for this possibility.			
	Organise other snooker players to play a short match in the final session.			
	Show a replay on the television for the final session.		•	
	Make the snooker players play all 35 frames.		•	
	Put fewer frames in the first three sessions to increase the probability that a fourth session will be played.			
	Offer a discounted price for the 4 th session.			
	Do not sell 4 th session tickets until it is confirmed to take place.		******	
		E1, E1	2.1a, 2.1a	E1 for each sensible solution (Max E2)

Qu	Scheme	Marks	AO	Notes
7(f)	Constant probability assumption			
	This is unlikely to be valid	E1	3.1b	This mark may be scored in the other assumption if not here Condone certainty
				(e.g. 'is not valid')
	Possible explanations (not exhaustive)			
	as a player's mood/concentration level may change over time.			
	as a player may have a bad session.	E1	3.1b	E1 for sensible explanation
	as the player who takes the break may get an advantage/disadvantage.			
	Independent results assumption			
	This is unlikely to be valid	(E1)		First E1 may be scored here if not scored above
	Possible explanations (not exhaustive)			
	as a player may lose confidence if (s)he is losing		3.1b	E1 for sensible explanation
	as a player may be having an off day.			
	as a player who is winning may feel more confident and play better.	E1		
	as a player may be more determined to win if (s)he is losing.			
	Total	14		

Qu	Scheme	Marks	AO	Notes
8(a)	Mode for each sensor is 0	B1	1.1	
8(b)	The sensors cannot detect very low levels of light			
	so all low levels of light will be recorded as 0			
	and so more 0s will be expected than any other 2dp measurement.			
		E1, E1	2.1a, 1.1	Any two of these
8(c)	Residual $r_A = y_A - (a + bx_A)$			
		M1	1.2	PI
	$= 3.58 - (1.8392 + 1.0771 \times 3.59)$			Correct use of regression equation
	= -2.13 (2 d.p.)	A1	1.2	awrt Actual: –2.125989
	SC $r_A = 2.13$ scores M1A0	1		
	Alternative			
				PI
	Sum of residuals = 2.12	(M1)		Evidence of summing residuals
	So $r_A = -2.12$	(A1)		cao

Qu	Scheme	Marks	AO	Notes
8(d)	Example situations (not exhaustive)			
	The (left) sensor was found to be faulty for this collision.			or turned off oe
	Experimental conditions had changed during this collision.			
	The measurement(s) had not been recorded/entered properly.			
	Point G may be outside the bounds of Therese's intended research.			
		E1	2.1b	E1 for sensible situation explained
8(e)(i)	r = 0.8931	B1	1.2	awrt 0.893
8(e)(ii)	y = 0.7720 + 1.2098x	M1	1.2	At least one correct coefficient seen awrt 1.21 awrt 0.772
		A1	1.2	Form and coefficients all correct
8(f)	<i>r</i> would remain the same	E1	2.1b	r only
	Possible reasons (not exhaustive)			
	as the correlation between x and y is the same as the correlation between y and x .			
	as a sample can't have two different values of <i>r</i> .			
	as the formula for r is the same if you switch x and y .			Symmetric formula
		E1	2.1b	E1 for sensible reason described

Qu	Scheme		Marks	AO	Notes
8(g)	It is too precise		E1	3.1a	accept accurate or it is not appropriate oe
	Possible reasons (no	ot exhaustive)			
	as the data is only decimal places.	given to 2			
	as the sample is sn are unlikely to be acc population.				
			E1	3.1a	E1 for sensible reason described
	SC It is valid as the s	tatistics will be mo	re accurate	e scores I	E1E0
		Total	13		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom